工程机械伸缩臂结构紧凑、工作效率高,广泛应用在起重机、高空作业车等工程机械设备中。工作中,伸缩臂为直接承载部件通过变幅和伸缩运动来实现对货物的起吊和搬运。现今伸缩臂多采用由高强度钢板焊接而成的箱型结构,并在伸缩臂臂体内部或者外部安装伸缩油缸来完成伸缩臂的伸缩运动。各节伸缩臂臂体之间主要依靠臂体与滑块的接触作用来传递载荷,因此,各节伸缩臂臂体与滑块接触处的应力分布比较复杂且明显**其他区域,接触区域应力水平决定了伸缩臂的承载能力。为了降低臂体接触区域应力,提高臂体承载能力,较终实现臂体优化设计,迫切需要对伸缩臂臂体与滑块接触区域应力进行研究。伸缩臂接触区域应力计算常用方法为解析法和有限元法。,, 本文借助pro/e、ansys和adams等软件,建立了该平台的虚拟样机模型,分析了不同工况下支腿受力和运动规律,并对折臂机构的铰点位置进行了优化,主要研究内容如下: 1、应用pro/e软件分别建立高空作业平台自行上车过程和作业过程的三维模型,将建立好的模型导入adams仿真环境,施加适当的约束与驱动后进行仿真分析,获得两种工作过程下的支腿各构件的运动学和动力学参数及其变化规律。 2、借助ansys软件生成支腿零部件的模态中性文件mnf(modalneutral file),并将其导入adams替代刚体构件,建立考虑支腿弹性变形的刚柔耦合模型,进而对整机自行上车过程和作业过程进行刚柔耦合动力学仿真计算,获得刚柔耦合模型的力、应力等随时间的变化曲线,并将获得的曲线与刚体模型曲线进行对比分析。 3、在adams环境下建立折臂机构可参数化的模型,通过软件自身的优化功能对该机构的铰点位置进行优化设计,获得了更加合理的折臂机构设计参数。 通过对高空作业平台虚拟样机刚体模型和刚柔耦合模型的分析可知,把构件自身的弹性、阻尼、惯性等因素考虑进来的刚柔耦合仿真更加接近实际;分析折臂机构铰点位置的优化结果发现,优化后的该机构在一定程度上改善了折臂油缸受力,提高了系统的起动稳定性和工作可靠性。